UCI Health will see you now: Welcome to our new co-workers and patients from Fountain Valley, Lakewood, Los Alamitos and Placentia-Linda! 

UC Irvine neuroscientists create fiber-optic method of arresting epileptic seizures

New approach holds promise of better treatment options for severe episodes

January 24, 2013
Ivan Soltesz, UC Irvine Chancellor's Professor and chair of anatomy & neurobiology

UC Irvine neuroscientists have developed a way to stop epileptic seizures with fiber-optic light signals, heralding a novel opportunity to treat the most severe manifestations of the brain disorder.

Using a mouse model of temporal lobe epilepsy, Ivan Soltesz, Chancellor’s Professor and chair of anatomy & neurobiology, and colleagues created an EEG-based computer system that activates hair-thin optical strands implanted in the brain when it detects a real-time seizure.

These fibers subsequently “turn on” specially expressed, light-sensitive proteins called opsins, which can either stimulate or inhibit specific neurons in select brain regions during seizures, depending on the type of opsin.

The researchers found that this process was able to arrest ongoing electrical seizure activity and reduce the incidence of severe “tonic-clonic” events.

“This approach is useful for understanding how seizures occur and how they can be stopped experimentally,” Soltesz said. “In addition, clinical efforts that affect a minimum number of cells and only at the time of a seizure may someday overcome many of the side effects and limitations of currently available treatment options.”

Study results appear online in Nature Communications.

More than 3 million Americans suffer from epilepsy, a condition of recurrent spontaneous seizures that occur unpredictably, often cause changes in consciousness, and can preclude normal activities such as driving and working. In at least 40 percent of patients, seizures cannot be controlled with existing drugs, and even in those whose seizures are well controlled, the treatments can have major cognitive side effects.

Although the study was carried out in mice, not humans, Soltesz said the work could lead to a better alternative to the currently available electrical stimulation devices.

Postdoctoral scholars Esther Krook-Magnuson and Caren Armstrong and staff researcher Mikko Oijala with UC Irvine’s Department of Anatomy & Neurobiology also contributed to the study, which was supported by the National Institutes of Health (grant NS074702), the Epilepsy Foundation and the George E. Hewitt Foundation for Medical Research.

About the University of California, Irvine: Founded in 1965, UC Irvine is a top-ranked university dedicated to research, scholarship and community service. Led by Chancellor Michael Drake since 2005, UC Irvine is among the most dynamic campuses in the University of California system, with more than 28,000 undergraduate and graduate students, 1,100 faculty and 9,400 staff. Orange County’s second-largest employer, UC Irvine contributes an annual economic impact of $4.3 billion. For more UC Irvine news, visit news.uci.edu.

News Radio: UC Irvine maintains on campus an ISDN line for conducting interviews with its faculty and experts. Use of this line is available for a fee to radio news programs/stations that wish to interview UC Irvine faculty and experts. Use of the ISDN line is subject to availability and approval by the university.